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Introduction 
 

Over the past three decades, much progress 
has been made in the remediation of soil and 
groundwater contaminated by chlorinated 
solvents.  Yet these pervasive contaminants 
continue to present a significant challenge to 
the U.S. Department of Energy (DOE), other 
federal agencies, and other public and private 
organizations.  The physical and chemical 
properties of chlorinated solvents make it 
difficult to rapidly reach the low 
concentrations typically set as regulatory 
limits.  These technical challenges often 
result in high costs and long remediation time 
frames.  In 2003, the DOE through the Office 
of Environmental Management funded a 
science-based technical project that uses the 
U.S. Environmental Protection Agency’s 
technical protocol (EPA, 1998) and directives 
(EPA, 1999) on Monitored Natural 
Attenuation (MNA) as the foundation on 
which to introduce supporting concepts and 
new scientific developments that will support 
remediation of chlorinated solvents based on 
natural attenuation processes.  This project 
supports the direction in which many site 
owners want to move to complete the 
remediation of their site(s), that being to 
complete the active treatment portion of the 
remedial effort and transition into MNA. 
 
The overarching objective of the effort was to 
examine environmental remedies that are 
based on natural processes – remedies such as 
Monitored Natural Attenuation (MNA) or 
Enhanced Attenuation (EA).  The research 
program did identify several specific 
opportunities for advances based on: 1) mass 

balance as the central framework for attenuation based remedies, 2) scientific 
advancements and achievements during the past ten years, 3) regulatory and policy 
development and real-world experience using MNA, and 4) exploration of various ideas 
for integrating attenuation remedies into a systematic set of “combined remedies” for 
contaminated sites. These opportunities are summarized herein and are addressed in more 
detail in referenced project documents and journal articles, as well as in the technical and 
regulatory documents being developed within the ITRC. 

Executive Summary 
 
The stability of a contaminant plume 
is a key to initiation of attenuation-
based remedies.  Measurement of the 
changes in contaminant flux along a 
groundwater flow path provides 
insight into plume stability and 
contaminant mass balance.  Thus 
characterization and monitoring tools 
that provide data specifically in terms 
of mass flux are of great interest.  A 
team of researchers from the 
University of Florida have developed 
such a tool, the Passive Fluxmeter, for 
deployment in groundwater 
monitoring wells.  This tool was 
developed with support from both the 
Department of Defense and the 
Environmental Protection Agency.  
The results of the research indicate the 
Passive Fluxmeter provided 
reasonable measures of local flux for 
multiple solutes and for water.  
However, as the researchers noted, 
unanswered questions remain 
associated with its use.  These 
questions include upscaling the results 
into a usable integrated mass flux (the 
total mass moving through a transect 
perpendicular to groundwater flow in 
a given time interval, e.g., Kg/day), 
deployment logistics, costs, and 
reliability/robustness.  
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Three topic areas were identified to facilitate development during this project.  Each of 
these topic areas, 1) mass balance, 2) enhanced attenuation (EA), and 3) innovative 
characterization and monitoring, was explored in terms of policy, basic and applied 
research, and the results integrated into a technical approach.  Each of these topics is 
documented in stand alone reports, WSRC-STI-2006-00082, WSRC-STI-2006-00083, 
and WSRC-STI-2006-00084, respectively.  In brief, the mass balance efforts are 
examining methods and tools to allow a site to be evaluated in terms of a system where 
the inputs, or loading, are compared to the attenuation and destruction mechanisms and 
outputs from the system to assess if a plume is growing, stable or shrinking.  A key in the 
mass balance is accounting for the key attenuation processes in the system and 
determining their rates.  EA is an emerging concept that is recognized as a transition step 
between traditional treatments and MNA.  EA facilitates and enables natural attenuation 
processes to occur in a sustainable manner to allow transition from the primary treatment 
to MNA.  EA technologies are designed to either boost the level of the natural attenuation 
processes or decrease the loading of contaminants to the system for a period of time 
sufficient to allow the remedial goals to be met over the long-term.  For characterization 
and monitoring, a phased approach based on documenting the site specific mass balance 
was developed.  Tools and techniques to support the approach included direct measures 
of the biological processes and various tools to support cost-effective long-term 
monitoring of systems where the natural attenuation processes are the main treatment 
remedies.  The effort revealed opportunities for integrating attenuation mechanisms into a 
systematic set of “combined remedies” for contaminated sites.  
 
An important portion of this project was a suite of 14 research studies that supported the 
development of the three topic areas.  A research study could support one or more of 
these three topic areas, with one area identified as the primary target.  The following 
report documents the results of field validation of the use of passive fluxmeters (PFMs) to 
provide direct in situ measurements of both cumulative water and multiple solute fluxes.  
This effort was led by Kirk Hatfield and Michael Annable of the University of Florida.  
This study supports the topic area(s) of mass balance and characterization and 
monitoring.  The objective of the study was to refine and deploy a tool to measure flux 
more directly than traditional methods and to develop a field-based protocol for 
determining contaminant loading, contaminant attenuation, and assimilative capacity 
using spatially distributed flux measurements of target contaminants.  The passive 
fluxmeter is a down-hole device that is deployed for an extended time and then retrieved 
and analyzed to directly assess the in situ cumulative water and dissolved contaminant 
fluxes in the vicinity of the well.  By spatially integrating the results from transects of 
PFMs, estimates of integrated mass discharge/mass flux can be calculated and inputted 
into mass balance calculations for an overall groundwater plume. The PFMs work on a 
simple concept.  A sorbing material is placed within the PFM and impregnated with 
soluble resident tracers.  As contaminated groundwater passively flows through the PFMs 
the contaminants are sorbed to the sorbent material within the PFM and the soluble 
resident tracers are leached at a rate proportional to groundwater flux.  
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As the MNA/EA project’s Technical Working Group (TWG) evaluated the importance of 
mass balance in determining if an attenuation based remedy would be appropriate for a 
site, they identified the flux of contaminants as an important measure.  Key to 
implementing attenuation based remedies is that the plume be stable or shrinking.  Flux 
measurements when normalized to a unit area provide a rate than can be inputted into 
models to evaluate plume stability and sustainability.  The TWG concluded that flux 
measurements can be valuable information to support decisions related to transitioning 
from one technology to another (typically from a source removal and/or treatment to an 
interdiction and active treatment and from an active treatment to an attenuation based 
treatment).  The TWG also concluded that point concentration measurements will 
continue to be the metric for success in site closure. 
 
Overall, the TWG was supportive of this work in that it advances the measurement and 
use of mass flux.  However, TWG members raised several points that warrant further 
investigation.  First, the technique is a point measurement that adds “time” to the 
equation (e.g. averages over time).  The tool has some of the same traditional issues with 
measurement in a well (e.g. screen lengths, adequate groundwater velocity etc.) that other 
downhole tools have.  Secondly, this method should be compared to alternative methods 
for calculating flux (e.g., simple methods to combine traditional estimates of flow and 
concentrations, pump tests, etc.) to evaluate relative strengths and weaknesses. Third, the 
impact of the subsurface microbial community on the soluble resident tracers is unknown 
and the subsequent impact on results.  Finally, the TWG recommended additional study 
of the reproducibility, reliability and robustness of the PFM equipment and method and a 
more complete evaluation of costs.   
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Executive Summary 

 

There is a growing consensus in the literature that measured or estimated contaminant mass flux J 

[M/L2/T] or contaminant mass discharge MQ can be used to generate robust estimates of natural 

and enhanced attenuation, and they can be used to characterize subsurface assimilative capacity 

(Borden et al. 1997; USEPA, 1998; and Bockelmann et al. 2003; Basu 2005). Contaminant mass 

flux J is generally defined as the mass of contaminant passing through a unit area per unit time, 

while the integrated mass flux or contaminant mass discharge is the spatial integration of the 

contaminant flux over a control plane. 

 

 This report presents results of a research project in which passive fluxmeters (PFMs) are used to 

measure changes of chlorinated ethene fluxes along the axis of a groundwater contaminant plume.  

A PFM is a down-hole device that operates passively to provide direct, in situ, cumulative 

measures of both local water and dissolved contaminant fluxes.  A transect of PFMs provides 

information that when spatially integrated generates estimates of contaminant mass discharge.  

Multiple PFM transects located down-gradient from a source area can be used to estimate spatial 

changes in contaminant mass discharge which are needed to calculate contaminant mass balances 

and characterize the intensity of natural attenuation (Bockelmann et al., 2003). 

 

 The objectives of this research were: 

 

1) demonstrate an innovative technology for direct in situ measurement of cumulative 

water and multiple solute fluxes in groundwater, 

2) develop a field-based protocol for determining contaminant loading, contaminant 

attenuation, and assimilative capacity using spatially distributed flux measurements 

of target contaminants (see Figure 3.3), and  

3) advance the science and understanding of natural attenuation using measured fluxes. 

 

The research plan included subsurface flux monitoring in a test-bed at the Savannah River Site 

(SRS) located immediately down-gradient of the C-Area Burning/Rubble Pit (CBRP).  As a result 

of the disposal practices at the CBRP during the 1960-70’s, a dissolved trichloroethylene (TCE) 

plume developed in the underlying aquifer extending approximately 1200 m from the CBRP to 

Fourmile Branch and an unnamed tributary that included the Twin Lakes.   The plume width was 
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previously estimated at 18 m.  Prior investigations found TCE above the maximum contaminant 

limits in surface waters of Twin Lakes but not in Fourmile Branch.  Near the CBRP, the bulk 

groundwater was aerobic shifting toward reducing conditions in the swampy outcrop environment 

of Twin Lakes.  It was here that both cis-1,2-dichloroethylene (DCE) and vinyl chloride (VC) 

were detected, which suggested TCE was undergoing reductive dechlorination.  

   

Flux monitoring of the TCE/DCE/VC plume was confined to 14 wells located within the Twin 

Lakes outcrop environment. This area was chosen because the ecological and geochemical 

environments that the contaminant plume flows through change as one moves down the 

centerline of the plume from the source to the discharge point providing an excellent setting to 

evaluate the robustness of the PFMs for measuring contaminant fluxes in the plume. 

 

Silver-impregnated-granular-activated carbon was used as a sorbent inside each fluxmeter.  The 

purpose of the sorbent was to intercept and retain dissolved TCE, DCE, and VC from 

groundwater flowing passively through the well and then through the fluxmeter.  The sorbent was 

also impregnated with known amounts of one or more fluid soluble resident tracers (various 

branched alcohols).  These tracers were leached from the sorbent at rates proportional to 

groundwater flux.  When PFMs were retrieved from the field, the sorbent was sampled and 

analyzed to quantify the contaminant mass intercepted and residual masses of multiple resident 

tracers.  The former was used to quantify contaminant flux and the latter to determine 

groundwater flux. 

 

Flux monitoring at the Twin Lakes test-bed was conducted over an 18 month period between the 

months of January 2005 to July 2006.  The network of 14 wells covered the last 530 m or 45% of 

the leading longitudinal extent of the chlorinated solvent plume originating from the CBRP.  

PFMs were deployed for three durations of 8, 42, and 139 days.  Water levels were measured and 

groundwater samples were collected from each well just before the PFMs were installed.  

Immediately following the above stated exposure periods to ambient groundwater flow 

conditions, each PFM was retrieved and the sorbent sampled. Three to four samples were 

collected from each fluxmeter.  Each sample provided depth-integrated flux measurement 

corresponding to an ~ 15 cm depth interval and three to four samples per fluxmeter provided data 

over the totaling the length of well screen (~ 45.7 to ~ 61 cm). 
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Water levels measured on three separate occasions within the 18 month field effort produced 

similar groundwater elevation profiles; consequently, the horizontal hydraulic gradient differed 

between wells but not significantly over experiment duration.  Groundwater fluxes were 

determined as function of depth at each of the 14 well locations.  Due to minor temporal 

variations in the local horizontal hydraulic gradients, the average ground water flux for the site 

ranged 2.1 to 2.3 cm/d between the three deployments. In other words, consistent site-wide 

averages were obtained even though durations of flux monitoring varied by an order of 

magnitude. Between wells, the depth-average specific discharge ranged between 0.6 to 7.4 cm/d; 

this corresponded to pore water velocities ranging from 2-30 cm/d using an effective porosity of 

25%.  At most wells the depth-averaged local estimate of groundwater specific discharge was 

consistent regardless of PFM deployment period. The only exceptions were wells CRP40B and 

perhaps CRP44B; here, measurement variations were greater. 

 

PFM measured groundwater specific discharges and the above described calculated local 

gradients were used to determine local aquifer conductivities at each well using Darcy’s Law. 

Measured conductivities varied between wells; however, at any given well results were similar 

between the different PFM deployment periods.  Absolute conductivity values range 0.3 to 7.9 

m/d over all well and all depths. Arithmetic averages compared closely to the slug test estimates 

(Flach et al. 1999). A histogram plot of conductivities measured from all wells and all depths 

indicated the chosen increment of depth sampling (15 cm) was sufficiently small to reveal a 

conductivity distribution that was positively skewed (i.e., possibly lognormal).  Most wells 

produced consistent determinations of water flux and in turn credible estimates of local aquifer 

conductivities under quasi-steady hydraulic conditions; hence, it was surmised PFMs installations 

were consistent and properly installed. 

 

Measurable TCE and DCE fluxes were found in several wells. VC fluxes, however, were quite 

low (0.25 mg/m2/d), measured in CRP 44B alone, and then only during the third deployment.  

After integrating results from three deployments, the 189-day average fluxes for TCE and DCE 

were 3-4 and 1-2 mg/m2/d respectively.  Peak TCE mass flows occurred at well CRP41 and then 

decreased rapidly within 200 meters in the direction of horizontal groundwater flow.  These 

fluxes were measured over consistent depth intervals of 1.6-4 m below ground surface and from 

wells horizontally distributed over a distance of 400 m; thus, it was surmised dispersion, 

degradation, and possibly volatilization were effecting contaminant attenuation within this thin 

vertical section of aquifer.  Further down-gradient from CRP41A and CRP41B, DCE fluxes 
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increased while TCE decreased significantly.  This increase in DCE was due to TCE degradation; 

however, the rate of increase was less than predicted if DCE were conserved.  Plots of TCE and 

DCE molar fluxes, and their sum revealed that DCE was attenuated at rates similar to TCE; 

however, at the down-gradient end of the sampling network, the rate of DCE attenuation appeared 

to stall.  Using contaminant fluxes from CRP41 as a reference, molar attenuation was 

approximately 99% for TCE and 85% for DCE. 

 

Given the extended duration of PFM deployments, the potential for TCE and DCE degradation on 

the PFM sorbent was a concern.  Following Basu et al. (2006), flux-averaged concentrations for 

TCE and DCE were derived from PFM data and then compared to measured concentrations from 

sampled well water. The comparison was generally favorable; although, to be conclusive 

additional study was recommended.  

 

Measured contaminant fluxes were used to quantify subsurface contaminant loading and the 

assimilative capacity of the aquifer within the sampling network. It was assumed the 14 

monitoring wells were completed in the same continuous groundwater flow system.  Thus, the 

fate of contaminants measured in up-gradient wells was assumed to be appropriately depicted in 

wells down-gradient. Analyses also assumed measured fluxes at wells CRP41A and CRP41B 

could be taken as representative TCE and DCE loads to the aquifer underlying Twin Lakes. 

 

Measured contaminant loads (expressed in micromoles) ranged from 69-130 µM/m2/d for TCE 

and 11-12 uM/m2/d for DCE and wells CRP41A and CRP41B.  Resultant 189-day weighted 

averages were 123 and 11 µM/m2/d.  Fluxes measured in wells constituting a transverse transect 

located at the down-gradient end of the monitoring network (.i.e., wells CRP44A, CRP44B, 

CRP49A, and CRP 49B) were taken to represent TCE, DCE, and VC mass discharges not 

attenuated within boundaries of the test site.   Here residual chlorinated ethane fluxes were 0-2 

µM/m2/d TCE, 14-29 µM/m2/d DCE and 1 µM/m2/d VC.  The corresponding 189-day average 

fluxes were 0.5, 1.0, and 20 µM/m2/d for TCE, VC, and DCE respectively. 

 

The composite assimilative capacity of the aquifer to degrade TCE and associated daughter 

products were expressed in terms chloride equivalents or the total moles of free chloride produced 

when TCE, DCE, and VC were completely degraded.  Using 189-day average fluxes for TCE, 

DCE, and VC entering and leaving the sampling network, the assimilative capacity of the aquifer 
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was estimated at 349 µM/m2/d as chloride equivalents.  This resulted in a level of attenuation that 

was approximately 89% complete. 

 

Modeling was conducted to characterize the rates of TCE and DCE attenuation.  Coupled flux-

based reactive transport equations were presented and solved to reproduce observed fluxes at 

monitoring wells.  Best-fit values of first order degradation parameters TCEλ  and DCEλ  for TCE 

and DCE for were 0.48 and 0.47 yr-1 respectively.  Values of calibrated decay parameters 

reflected ‘effective’ or ‘apparent’ estimates that were well within the range of values (0.1-1 yr-1) 

reported in the literature (Weidemier et al. 1999).  The nature of TCE and DCE degradation was 

not discerned here, but likely included both aerobic and anaerobic pathways (Basu et al. 2006; 

Sing et al. 2004; and Davis et al. 2002).  The model produced reasonable simulations of TCE and 

DCE fluxes at most well locations except at the down-gradient end of the sampling network. Here 

it appeared the model over estimated DCE attenuation.  Because low VC fluxes were measured 

here and nowhere else, this could mean that both DCE and VC attenuation had stalled. 
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1.0 Introduction 
 

1.1  Monitored Natural and Enhanced Attenuation and Mass Flux 

There is a growing consensus in the literature that measured or estimated contaminant mass flux J 

[M/L2/T] or contaminant mass discharge MQ can be used to generate robust estimates of natural 

and enhanced attenuation, and they can be used to characterize subsurface assimilative capacity 

(Borden et al. 1997; USEPA, 1998; and Bockelmann et al. 2003; Basu 2006). Contaminant mass 

flux J is generally defined as the mass of contaminant passing through a unit area per unit time. 

Assuming convective transport is dominant. Then, 

 

FCqJ OC =           (1) 

 

where qo is specific discharge, [L/T]; and CF is the flux-averaged contaminant concentration in 

the groundwater, [M/L3].  The integrated mass flux or contaminant mass discharge MQ is the 

spatial integration of the contaminant flux over a control plane, AS ; thus, 

   

dAJM
SA

CQ ∫=         (2) 

 

where MQ is the contaminant mass discharge, [M/T];  dA represents an elemental area, [L2];  and 

As is the source area or the area of the control plane orthogonal to groundwater flow [L2].  

Accurate determination of subsurface solute mass flows is difficult using concentration-based 

field data and typical methods of estimating groundwater fluxes, because spatial variations in 

both concentrations and groundwater flows induce mass flow variations that range orders of 

magnitude.  Notwithstanding this variability, hydrologists typically approximate solute mass 

flows using calculated (i.e., not measured) groundwater fluxes and depth-averaged concentrations 

gathered from wells.  This approach can obscure depth variations in flux which can propagate 

errors in estimated contaminant loads and contaminant attenuation from which erroneous 

assessments of system assimilative capacities may be derived. 
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Currently, three methods exist to estimate integrated contaminant mass flux or mass discharge 

from field measurements.  The first assumes mass discharge estimates can be derived from 

spatially integrating the product of measured local flux-averaged contaminant concentration, CF 

and indirect estimates of water flux.  Point-wise estimates of CF are obtained directly from 

sampling transects of single or multilevel monitoring wells.  Water fluxes, however, are 

determined indirectly, that is they are assumed or calculated at locations of each sampling point.  

Finally, an integration or spatial averaging of point estimates is performed to quantify 

contaminant flow over the entire transect. Kuebert and Finkel (2006) describe six variations this 

method, while Borden et al. (1997), King et al. (1999), and Kao and Wang (2001) present results 

of field demonstrations. 

 

Holder, et al., (1998), Schwarz et al. (1998), Teutsch et al. (2000), and Bockelmann et al. (2001 

and 2003) describe the development and evaluation of a second method or the integral 

groundwater investigation method (IGIM).  This technique directly measures MQ, and it involves 

one or more wells pumped at constant flow rates to provide partial or complete capture of the 

dissolved plume.  The contaminant concentration histories monitored at the wells are interpreted 

to estimate contaminant mass flow from a portion of the control plane (vertical cross-section) of 

the plume.  The cross-sectional area of aquifer interrogated, As, is calculated from the well flow 

rate and the ambient groundwater flux, which may be measured, calculated, or assumed.  The 

method provides limited information on the spatial distribution of contaminant fluxes; although 

mass discharge estimates may reflect less uncertainty because spatial integration/interpolation of 

point data is not performed.  Usually, the IGIM is performed with one well; although, Bayer-

Raich et al. (2006) describe a multi-well IGIM to infer mass flows and natural attenuation rates. 

Contaminant flux values derived from single applications of the above two methods represent 

short-term evaluations that reflect current conditions and not long-term trends.   

 

Hatfield et al. (2002 and 2004) introduced a third method known as the passive fluxmeter (PFM).  

This is a down-hole device that operates passively and provides direct, in situ, cumulative local 

measures of both water and dissolved contaminant fluxes.  Cumulative flux monitoring 

incorporates day-to-day fluctuations in flow and contaminant concentration and can therefore 

generate measures that reflect long-term transport conditions.  Annable et al. (2005) present 

evidence of PFM validation in the field, Basu et al. (2006) recently demonstrate their utility in 
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site characterization, Campbell et al. (2006) and Klammler et al. (2006a) introduce various PFM 

designs for measuring both the magnitude and direction of fluxes. 

 

Like the first method described above, a transect of PFMs provides information that must be 

spatially integrated to estimate contaminant mass discharge.  However, this discharge estimate is 

generally more accurate than alternative estimates derived under the first method (Kuebert and 

Finkel 2006).  Regardless of method, integrated fluxes from more than one transect located down-

gradient from a source zone can be used to quantify natural attenuation and contaminant mass 

balances (Bockelmann et al., 2003).  Thus far, the PFM has not been evaluated as a tool to 

monitor multiple organic/inorganic solutes fluxes or to support characterization and monitoring at 

sites where monitored natural attenuation/enhanced attenuation (MNA/EA) is the focus.   
 

1.2 Project Scope and Objectives 

Because PFMs could be used to generate field estimates of integrated contaminant fluxes, it was 

relevant to determine if PFMs possess significant utility as a tool for conducting MNA and 

assessing the potential for EA. This report presents results of a field effort conducted at the Twin 

Lakes site of the Department of Energy’s Savannah River Site located in Aiken, South Carolina.  

The scope of this research effort was to evaluate the effectiveness of PFMs for monitoring the 

simultaneous natural attenuation of multiple chlorinated ethenes.  The specific research objectives 

were to: 

 

1) demonstrate an innovative technology for direct in situ measurement of cumulative 

water and multiple solute fluxes in groundwater, 

2) develop a field-based protocol for determining contaminant loading, contaminant 

attenuation, and assimilative capacity using spatially distributed flux measurements 

of target contaminants, and  

3) advance the science and understanding of natural attenuation using measured fluxes. 
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2.0 Passive Fluxmeter 
 

2.1 Overview 

The PFM is a self-contained permeable unit that is inserted into a well or boring such that it 

allows groundwater to flow passively through it (See Figure 2.1). The interior composition of the 

meter is a matrix of hydrophobic and/or hydrophilic permeable sorbents that retain dissolved 

organic and/or inorganic contaminants present in fluid intercepted by the unit.  The sorbent 

matrix is also impregnated with known amounts of one or more fluid soluble resident tracers.  

These tracers are leached from the PFM at rates proportional to groundwater flux.  

 

After a specified period of exposure to groundwater flow, the PFM is removed from the well.  

The sorbent is then carefully extracted to quantify the mass of all contaminants intercepted by the 

PFM and the residual masses of all resident tracers. The contaminants masses are used to 

calculate cumulative time-averaged contaminant mass fluxes, while residual resident tracer 

masses are used to calculate cumulative time-average groundwater flux (Hatfield et al. 2004).  

Depth variations of both groundwater and contaminant fluxes can be measured in an aquifer from 

a single PFM by vertically segmenting the exposed sorbent packing, and analyzing for resident 

tracers and contaminants (Annable et al. 2005; Basu et al. 2006; and Klammler et al. 2006b).  

Thus, at any specific well depth, an extraction from locally exposed sorbent yields the mass of 

resident tracer remaining and the mass of contaminant intercepted.  Note that multiple tracers 

with a range of partitioning coefficients are typically used to determine variability in groundwater 

flow with depth. 
   

2.2 Groundwater Flux 

As indicated above, resident tracers are used to estimate total groundwater flux.  As groundwater 

flows through the PFM, soluble tracers are eluted from the sorbent matrix and displaced from the 

PFM.  Figure 2.2 illustrates two hypothetical cross-sections of a meter configured as a circular 

column (such as one installed in a monitoring well). Cross-section-A reveals a single resident 

tracer displaced to the right and displaced from the section in a manner consistent with the 

assumption that fluid streamlines are parallel to the general direction of groundwater flow 

(Klammler et al. 2006b). The residual mass of resident tracer retained within the PFM cross-

section is measured and used to quantify cumulative water flux. 
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Assuming reversible, linear and instantaneous resident tracer partitioning between the sorbent and 

groundwater, the cumulative volume of groundwater intercepted by the PFM, at a specified well 

depth is obtained iteratively using the following equation: 
 

  

2/12
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Sin       (3) 

           

where MR is the relative mass of tracer retained in the PFM sorbent at the particular well depth 

and  ξ is the dimensionless cumulative volume of groundwater intercepted by the PFM (Annable 

2005; and Hatfield et al 2004, 2002a, 2002b).    
. 

 

The Borehole flux meter:  A 
Permeable Sock Packed with Sorbent 

Pipe Attached to Sock Used to Extract 
The Borehole flux meter from a Well

Rod Attached to End of Permeable Sock 
Used to Insert the Borehole flux meter 

 
 

Figure 2.1. Schematic of a PFM comprised of a permeable sock filled with a selected 

sorbent 

 

The groundwater flux, q [L/T](e.g., m/day), through the sorbent is calculated using: 
 

  
t
Rrq dξθ2

=          (4) 
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where r is the radius of the PFM cylinder; θ, is the water content of the sorbent; Rd is the 

retardation factor of the resident tracer on the sorbent; and t is the sampling duration.  Since in 

most field applications, groundwater flux is unknown, multiple resident tracers are typically used 

to represent a broad range of tracer retardation factors.  Likewise, multiple tracers provide for 

PFMs designed for both long- and short-term sampling durations. 

 

As indicated above, q, is the specific discharge of groundwater flowing through the sorbent; 

however, the flux of interest is the ambient specific discharge of groundwater, Oq .  The two 

discharges are linearly related. 
 

Oqq α=         (5) 

 

where α is a factor, calculated from the geometry of the well and the estimated permeabilities of 

the aquifer, the well screen, the well packing, and the sorbent (Klammler et al., 2006b). 

 

2.3 Contaminant Mass Flux 

The distribution of contaminant intercepted and retained on the PFM sorbent after exposure to 

groundwater flow field is illustrated in cross-section-B of Figure 2.2. The contaminant mass 

retained is used to estimate the local contaminant flux.  The measured flux is valid over the 

dimensions of porous medium contributing flow to the PFM.  For example, a PFM designed to 

sample the entire vertical depth of an aquifer could be used to characterize horizontal 

groundwater and contaminant fluxes continuously over the vertical extent of an aquifer. The time-

averaged convective contaminant mass flux from a finite sampling duration is calculated from 

mass of contaminant intercepted by the PFM using the following equation (Hatfield et al., 2004): 

 

   
rbt
mJ C

C απ
67.1

=         (6) 

where Jc [M/(L2T)] is the time-averaged ambient convective contaminant mass flux, mc [M] is the 

mass of contaminant sorbed, b [L] is the length of sorptive matrix sampled or the vertical 

thickness of aquifer interval interrogated, and t [T] is the duration of the measurement. The flux 

average concentration CF [M/L3] is determined CF = [Jc/q]. 
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Contaminant 
Flux

Contaminant 
Flux

PFM Concepts

Contaminant SorbedContaminant Sorbed

Water Flux

q0q0

Tracer ElutedTracer Remaining Tracer ElutedTracer Remaining Tracer ElutedTracer Remaining

A B  

Figure 2.2. PFM cross-sections (A): tracer distribution after exposure to groundwater 

flow field, (B): contaminant distribution after exposure to groundwater flow field. 

 

 

Multiple PFMs located in a transect perpendicular to the mean direction of groundwater flow can 

be used to produce estimates of contaminant mass discharge (integrated flux) which is equivalent 

to the strength of the plume, if the transect encompasses the transverse extent of the dissolved 

plume, or the source strength if flux integration is performed across a “control plane” located 

immediately down gradient of the source zone. 
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3.0 Field Study 
 

3.1 Site History 

The field site exists within the boundaries of the Department of Energy’s Savannah River Site 

(SRS) which encompasses approximately 310 square miles in South Carolina, adjacent to the 

Savannah River.  Geographically it lies within the Atlantic Coastal Plain, a southeast-dipping 

wedge of unconsolidated and semi-consolidated sediment that extends from its contact with the 

Piedmont Province at the Fall Line to the edge of the continental shelf.  Groundwater flow in the 

upper aquifers at the SRS is driven by recharge, with streams intercepting flow from areas of 

higher groundwater elevations.  Nearly all recharge within the study area discharges to streams 

(Aadland et al., 1991; 1995). 

 

Subsurface flux monitoring was conducted in a test-bed at the SRS located immediately down-

gradient of the C-Area Burning/Rubble Pit (CBRP).  The CBRP was constructed in the early 

1960s for use as a burning pit.  It was approximately 7.6 m wide by 33 m in length with depth 

ranging from 2.4 to 3.7 m.  Materials disposed into the pit during operations included organic 

solvents, waste oils, paper, plastics, and rubber.  These materials were burned periodically to 

reduce the overall waste volume in the pit.  After 1973, the pit was used to dispose of inert rubble.  

Characterization activities indicated a small volume of DNAPL, primarily trichloroethylene 

(TCE), in the vadose zone near the pit.  An active soil vapor extraction system was used to 

remediate the source; thus, eliminating TCE loading to the underlying aquifer. 

 

As a result of the disposal practices at the CBRP there is a dissolved TCE plume in the underlying 

aquifer (see Figure 3.1). The plume extends approximately 1200 m from the CBRP to Fourmile 

Branch and an unnamed tributary that includes the Twin Lakes.   The plume is approximately 18 

m in width.  The Twin Lakes are two former ponds that have been breached.  At present they are 

mostly a swampy area that periodically retains water during periods of heavy rain; thus, they 

represent zones of groundwater discharge.  TCE is found above the maximum contaminant limits 

in surface waters of the Twin Lakes but not in Fourmile Branch.  Near the source, the bulk 

groundwater is aerobic shifting toward reducing conditions in the swampy outcrop environment 

of Twin Lakes. It is here that both cis-1,2-dichloroethylene (DCE) and vinyl chloride (VC) are 

detected, which suggests TCE is undergoing reductive dechlorination.  
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Flux monitoring of the TCE/DCE/VC plume was confined to wells located within the Twin Lakes 

outcrop environment. This area was chosen because contaminants migrate through ecological and 

geochemical environments that change along the centerline of the plume from the source to the 

discharge point.  This provides an excellent setting to evaluate the robustness of the PFMs to 

estimate contaminant fluxes along the length of a plume in regions and at contaminant 

concentrations typical for natural attenuation remedies.   

 

Figure 3.1. Test bed encompassing Twin Lakes and the C-Area Burning/Rubble Pit 

(Bills et al. 2000). 

 

3.2 Field Campaign 

Flux monitoring at Twin lakes test bed was conducted over an 18 month period using a network 

of 14 wells distributed along the longitudinal axis of chlorinated solvent plume originating from 

CBRP (See Figure 3.2).  The monitoring network covered 530 m or 45% of the leading 

longitudinal extent of the plume.  Listed in Table 3.1 were relevant characteristics of the 14 wells.   

The network was comprised of four transects, three oriented transverse and one parallel to the 
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principal groundwater flow direction.  Wells comprising the three transverse transects included 

CRP40A, CRP40B, CRP45A and CRP45B in the first, CRP43A, CRP43B, and CRP48A in the 

second, and then CRP44A, CRP44B, CRP49A, and CRP49B in the third. Between the first and 

second transverse transects were wells CRP41A, CRP41B and CRP42A; these wells comprised 

the greater longitudinal transect and proved critical in subsequent analyses of flux variations in 

the direction of groundwater flow.  PFMs were deployed for three durations of 8, 42, and 139 

days between the months of January 2005 to July 2006. Water levels were measured and 

groundwater samples were collected from each well prior to PFM installation.  Analyses of 

groundwater samples yielded measurable TCE and DCE concentrations but no VC.  Measured 

well water levels were used to calculate groundwater hydraulic gradients.  Fluxmeters were 

constructed using silver impregnated activated carbon; the preferred PFM sorbent identified in 

Phase I of the project (Cho, Annable, and Hatfield, 2006).  PFMs were exposed to ambient field 

conditions according to the above stated durations and then retrieved from the wells for sorbent 

sampling in the field. Three to four samples of activated carbon were collected from each meter.  

Each sample provided depth-integrated flux measurement corresponding to a ~ 15 cm depth 

interval and three to four samples provided data over the total length of well screen (~ 45.7 to ~ 

61 cm).  Activated carbon samples were analyzed for multiple resident tracers (methanol, ethanol, 

isopropyl alcohol, tertiary butyl alcohol, and 2,4 dimethyl-3- pentanol) and contaminants TCE, 

DCE, and VC as described in (Basu et al. 2006; and Annable et al. 2005), Residual resident tracer 

masses were used to quantify local groundwater fluxes.  Estimates of local hydraulic gradients 

and PFM measured groundwater fluxes were used to quantify local aquifer conductivities 

(Klammler et al. 2006b).  Contaminant masses intercepted and retained by PFMs were used to 

quantify local contaminant fluxes (Annable et al. 2005; Basu et al. 2006; and Klammler et al. 

2006b).   
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Table 3.1:  Wells in the PFM monitoring network. 

PFM Monitoring Wells 
 

Well 
Number 

Well ID Screen 
Length 

 
[cm] 

Total 
Depth

 
[ m ] 

Diameter
 
 

[cm] 

Darcy
Flux 1 

 
[cm/d]

Hydraulic
Gradient 2 

Aquifer 
Hydraulic 

Conductivity 3 

[m/d] 
1 CRP 45B 45.7 2.95 5.4 1.4 0.012 1.2 
2 CRP 45A 45.7 1.88 5.4 1.0 0.012 0.8 
3 CRP 40A 61.0 3.17 5.4 1.6 0.012 1.3 
4 CRP 40B 61.0 4.09 5.4 6.0 0.012 5.0 
5 CRP 41A 61.0 3.18 5.4 2.9 0.015 1.9 
6 CRP 41B 61.0 3.70 5.4 3.8 0.015 2.5 
7 CRP 42A 61.0 1.74 5.4 1.7 0.018 0.9 
8 CRP 48A 45.7 1.96 5.4 2.0 0.020 1.0 
9 CRP 43A 61.0 2.18 5.4 1.5 0.021 0.7 

10 CRP 43B 61.0 2.90 5.4 2.4 0.021 1.2 
11 CRP 44A 61.0 1.59 5.4 2.3 0.026 0.9 
12 CRP 44B 57.6 2.59 5.4 2.0 0.026 0.8 
13 CRP 49A 45.7 1.55 5.4 1.3 0.026 0.5 
14 CRP 49B 45.7 2.18 5.4 1.2 0.026 0.5 

1 Average of all PFM measurements 
2 Average over the three deployment periods 
3 Calculated using Darcy’s Law, Darcy Flux, and Hydraulic gradient  
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3.3 Data Processing 

Water levels, groundwater contaminant concentrations, measured PFM tracers and contaminant 

masses intercepted and retained on PFMs were used to estimate at each well local groundwater 

hydraulic gradients, aquifer conductivities, groundwater specific discharge and contaminant mass 

flux.  Illustrated in Figure 3.3 is the flow chart used to process raw data.  Requisite raw data 

appear in red and derived results in blue. Pertinent sections of the report where protocols/methods 

are discussed are also indicated. 
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Figure 3.2. Network of 14 wells used for PFM in the test bed encompassing Twin 

Lakes.  
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Data Processing

Aquifer 
Conductivity K

(Section 4.2)

Ambient Ground
Water Flux qO

(Sections 2.2 & 4.1)

Residual Mass of
PFM Tracers

Hydraulic
Gradient

(Section 4.1)

Contaminant Mass 
Intercepted by PFM

Ambient Contaminant
Mass Flux

(Sections 2.3 & 4.3)

Groundwater
Levels

Assessment of
Contaminant Attenuation

(Section 4.4)  

Figure 3.3. Data processing flow chart used to generate final results (blue) from raw 

data (red).  
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4.0 Results 
 

4.1 Hydraulic Gradients and Groundwater Fluxes 

Water levels measured on three separate occasions within the 18 month field effort produced 

similar groundwater elevation profiles.  Measured water levels from the field site during the 

second sampling campaign in September 2005 were plotted in Figure 4.1.  For each of the three 

sampling events, second order polynomials were fitted to describe water elevations as a function 

of distance along the sampling network (r2 = 0.99).   Derivatives of these functions were then used 

to estimate local groundwater gradients at each well location.  Changes in water levels were 

observed between measurements; however, calculated horizontal hydraulic gradients differed by 

less than 4 percent over the 18 months field effort. Listed in Table 3.1, were average gradients 

calculated at each well. 

 

Groundwater fluxes were determined as a function of depth at each of the 14 well locations. For 

these calculations equations 3-5 were used.  Following Klammler et al. (2006b), the convergence 

factor α was equated to 0.88.  Statistics of groundwater flux measurements take during the three 

PFM deployments were listed in Table 4.1.  Due to the similarity in the local horizontal gradients 

detected over the 18 month field experiment, it was expected that the measured water fluxes at 

any given well would be similar for each of the three deployments.  The average water flux for 

the site ranged from 2.1 to 2.3 cm/d between deployments. Thus, consistent site-wide averages 

were obtained even though durations of flux monitoring varied by two orders of magnitude. 

Depth-averaged groundwater specific discharges measured at each well during each of the three 

deployments were displayed in Figure 4.2. Here again consistent measures were obtained 

between deployments at most wells except for CRP40B (well No. 4, from Table 3.1) and perhaps 

CRP44B (well No. 12); here, measurement variations were greater.  For each well, calculated 

discharges obtained from averaging measurements from the three PFM deployments were 

presented in Table 3.1. Estimated pore water velocities ranged from 2-30 cm/d using an effective 

porosity of 25% (Flach et al. 1999).  
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Figure 4.1. Second-order polynomial fit to groundwater elevations measured near 

Twin Lakes in September 2005. Distance down-gradient from well CRP41 is 

positive. 

 

Table 4.1:  Statistics of PFM measured groundwater specific discharge. 

Ambient Water Flux [cm/d ] 
PFM Deployment Duration Statistic 

8 day 42 day 139 day 
Average 2.1 2.3 2.2 
Standard Deviation 1.4 1.9 0.9 
Maximum 6.5 7.4 4.2 
Minimum 0.9 0.6 1.3 
Geometric Mean 1.9 1.8 2.0 
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Figure 4.2.  PFM measured groundwater specific discharge at each well during each 

of the three deployments and the simple arithmetic average.  Well numbers 

correspond to those presented in Table 3.1 and matched with labels previously 

specified.  

 

4.2 Aquifer Hydraulic Conductivities 

PFM measured groundwater specific discharges and the above described calculated local 

gradients were used to determine local aquifer conductivities at each well using  

Darcy’s Law. 
 

φ
OqK −=          (7) 

 

where K is the aquifer hydraulic conductivity [L/T], Oq  is the ambient groundwater flux [L/T], 

and φ  is the local hydraulic gradient [-].  Listed in Table 3.1 were average aquifer conductivities 

calculated at each well during the field experiment. Additional details and statistics on PFM 
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estimated conductivities for each deployment period were listed in Table 4.2.  Expected results 

were similar between the different PFM deployment periods.  Absolute conductivity values 

compared closely to the slug test estimates (Flach et al. 1999).  Conductivity values reported by 

Bill et al. (2000) reflected results of large-scale pump tests and as such were not expected to 

compare with local PFM estimates.  A histogram plot of conductivities measured from all wells 

and all depths (not shown) indicated the chosen increment of depth sampling (15 cm) was 

sufficiently small to reveal a conductivity distribution that was positively skewed (i.e., possibly 

lognormal).  Most wells produced consistent determinations of water flux and in turn credible 

estimates of local aquifer conductivities under quasi-steady hydraulic conditions; hence, it was 

surmised most PFMs installations were consistent and properly installed.  In other words, 

favorable hydraulic connections were obtained between installed PFMs and the local aquifer such 

that short-circuiting of groundwater flow through an annulus between the PFM and the aquifer 

was minimized.  This condition must exist to obtain valid measures of both water and 

contaminant flux. 
 

Table 4.2.  Statistics on PFM measured aquifer conductivities. 

Aquifer Conductivity Estimates [ m/d] 
Sampling 
Duration 
[Days] 

Minimum Maximum Arithmetic 
Mean 

K  

Geometric 
Mean 

GK  

Reported 

8 0.4 5.2 1.3 1.0 
42 0.3 7.9 1.5 1.0 

139 0.5 3.8 1.3 1.1 

(1.3-1.4)a 
(4.0-10.7)b 

a Flach et al. 1999 
b Bills et al. 2000 

 

 

4.3 TCE, DCE, and VC Fluxes 

PFMs were used to obtain direct in situ measures of cumulative TCE, DCE, and VC fluxes in 

groundwater underlying Twin Lakes.  Measurable TCE and DCE fluxes were found in several 

wells.  VC fluxes, however, were quite low (0.25 mg/m2/d), measured in CRP 44B alone, and 

then only during the third deployment. From three PFM deployments, a summary of flux 

statistics were presented in Table 4.3. Average fluxes for TCE and DCE were 3-4 and 1-2 

mg/m2/d respectively. TCE fluxes appeared to increase with the sampling duration, but this 

cannot be confirmed given the large standard errors on estimated means and the positive 

skewness evident in the distribution of measured fluxes (see Figure 4.3).        
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Table 4.3. Statistics of contaminant fluxes from the three PFM deployments. 

Contaminant Fluxes [mg/m2/d ] 
Sampling Duration 

[Days] 
TCE DCE 

8 3.2 (0.9) 1.4 (0.4) 
42 3.9 (1.6) 2.0 (0.6) 

139 4.2 (2.2) 1.1 (0.4) 
Contents inside parentheses indicate standard errors 
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Figure 4.3.  TCE and DCE Flux histograms. 

 

 

Figure 4.4 shows TCE and DCE fluxes vary with depth at wells CRP41A and CRP41B.  Both 

wells are located in the up-gradient portion of the sampling network where TCE fluxes are much 

greater than DCE.  It is also of interest to note that TCE fluxes increase with depth perhaps 

because the contaminant is a DNAPL and because CRP41A and CRP41B are among the first 

monitoring wells located down-gradient from the source area and within a groundwater discharge 
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zone.  Flux trends with respect to depth differ between wells but not between seasons or PFM 

deployments.   

 

Depth-averaged TCE and DCE fluxes were plotted in Figures 4.5 and 4.6.  Again measurable VC 

fluxes were detected in CRP44B alone which was one of the deeper wells located at the down-

gradient end of the sampling network.  For TCE, peak mass flows occurred at well CRP41 and 

then decreased rapidly within 200 meters in the direction of horizontal groundwater flow.  These 

fluxes were measured over consistent depth intervals of 1.6-4 m below ground surface and from 

wells horizontally distributed over a distance of 400 m; thus, it was surmised dispersion, 

degradation, and possibly volatilization were effecting contaminant attenuation within this thin 

vertical section of aquifer.  Further down-gradient from CRP41A and CRP41B, DCE fluxes 

increased while TCE decreased significantly.  This increase in DCE was due to TCE degradation; 

however, the rate of increase was less than predicted if DCE were conserved.  Plots of molar 

fluxes for TCE, DCE, and their sum were presented in Figure 4.7.  From this figure, it was 

evident that DCE attenuated at rate similar to TCE; however, at the down-gradient end of the 

sampling network, DCE attenuation appeared to stall.  Using contaminant fluxes from CRP41 as 

a reference, molar attenuation was approximately 99% for TCE and 85% for DCE (this 

calculation included moles of DCE generated from TCE degradation).       

Flux at CRP41  [ mg/m2/d ]

Depth
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Figure 4.4.  Depth variations in measured TCE and DCE fluxes at well CRP41A and 

CRP41B. 
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Figure 4.5. TCE fluxes measured in the direction of groundwater flow from three 

PFM deployment durations. 
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Figure 4.6. DCE fluxes measured in the direction of groundwater flow from three 

PFM deployment durations. 
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Figure 4.7.  189-day average molar fluxes for TCE, DCE, and their sum.  

 

 

 

Given the extended duration of PFM deployments, TCE and DCE degradation on the PFM 

sorbent was a potential concern.  To investigate this potential problem, flux-averaged 

concentrations, CF for TCE and DCE were calculated using PFM data and then compared direct 

measures of contaminant concentrations in sampled well water.  Flux- averaged contaminant 

concentrations derived from PFMs were obtained from integrating measured water and 

contaminant fluxes over the screen length. 
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Following Basu et al. (2006), these derived concentrations were then compared to contaminant 

concentrations measured in water samples gathered from each well prior to PFM installation. If 

the target contaminant were degrading inside the PFM, then the flux-averaged concentration 

given by PFM should tend to be lower than concentration measured in well. However, the 

validity of this comparison would dissipate if well water concentrations were not relatively 

constant over the duration of PFM monitoring. 

 

Plotted in Figure 4.8 are well and PFM flux-averaged concentrations along the sampling network. 

This figure shows both assessments give comparable concentration distributions over the 

monitoring network. Plotted well water concentrations reflect the average of three instantaneous 

measurements taken at each well just before fluxmeters were deployed.  Plotted CF values from 

PFMs represent weighted averages generated from three deployments totaling 189-days of 

cumulative monitoring. 

 

Because well concentrations varied with time, the comparison given by Figure 4.8 was not 

conclusive. Thus, more definitive testing would be needed to evaluate contaminant degradation 

on fluxmeters. Perhaps additional field experiments conducted with PFMs preloaded with 

fluorinated analogs of TCE, DCE, and vinyl chloride (Vancheeswaran et al. 1999). That is, from 

measuring the degradation of these analogs on installed PFMs, one could correct ambient 

measures of TCE, DCE, and VC fluxes for degradation occurring on the PFM sorbent.  This 

information could also serve to generate local assessments of in situ contaminant attenuation 

resulting from indigenous microbial activity.   
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Figure 4.8. Flux-averaged concentrations of TCE and DCE from PFMs compared to 

groundwater concentrations averaged from three sampling events.   

 

 

4.4 Assessment of Natural Attenuation 

One of the stated research objectives was to develop a field-based protocol for determining 

contaminant loading, contaminant attenuation, and assimilative capacity using spatially 

distributed flux measurements of target contaminants.  In this section, measured contaminant 

fluxes are used to quantify subsurface contaminant loading and the assimilative capacity of the 

aquifer within the sampling network.  Modeling is then conducted to characterize the rates of 

TCE and DCE attenuation.  Analyses for contaminant loading, assimilative capacity, and 

attenuation assume the 14 monitoring wells interrogate the same continuous groundwater flow 

system.  Thus, the fate of contaminants measured up-gradient wells is assumed to be 

appropriately depicted in wells down-gradient. Analyses also assumes measured fluxes at wells 

CRP41A and CRP41B can be taken as representative TCE and DCE loads to the aquifer 

underlying Twin Lakes. 
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Between three PFM deployments, measured contaminant loads ranged from 69-130 µM/m2/d for 

TCE and 11-12 uM/m2/d for DCE.  Resultant 189-day weighted averages were 123 and 11 

µM/m2/d.  Integrated fluxes derived from wells constituting the last transect (i.e., CRP44A, 

CRP44B, CRP49A, and CRP 49B) were taken to represent TCE, DCE, and VC mass discharges 

not attenuated within boundaries of the test site.   Here the residual contaminant fluxes ranged 0-2 

µM/m2/d TCE, 14-29 µM/m2/d DCE and 1 µM/m2/d VC.  The 189-day average mass flows for 

contaminants exiting the test site were 0.5, 1.0, and 20 µM/m2/d for TCE, VC, and DCE 

respectively. 

 

The composite assimilative capacity of the aquifer to degrade TCE and associated daughter 

products can be expressed in terms of chloride equivalents or the total moles of free chloride 

produced when TCE, DCE, and VC are completely degraded.  Thus, 
 

O
VC

O
DCE

O
TCE

I
VC

I
DCE

I
TCE JJJJJJ −−−++= 2323η      (9) 

 

where η is the assimilative capacity of the aquifer expressed in molar flux [µM/m2/T] or molar 

discharge [µM/T]; i
kJ  represents the molar flux of contaminant k at the up-gradient end of the 

sampling network (i = I ) or the down-gradient end of the sampling network (i = O), [µM/m2/T].  

Coefficients preceding each i
kJ  represent stochiometric coefficients for the moles of chloride 

produced per mole of contaminant k completely degraded. Using the above stated 189-day 

average fluxes for TCE, DCE, and VC leaving the test site and the contaminant mass loads 

measured at wells CRP41A and CRPB, the estimated assimilative capacity of the aquifer was 349 

µM/m2/d as chloride equivalents.  The extent of total contaminant attenuation within the 

monitored of aquifer can also be determined using the following equation: 
 

I
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DCE
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TCE

E JJJ
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23

2323
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Where Eβ  quantifies the fraction of total contaminant attenuation [-].  Again, using the above 

stated 189-day average fluxes at wells CRP41A and CRP41B as estimates of  contaminant loads 

to the aquifer and results from the last monitored transect to quantify residual loads, attenuation 

appears to be 89% complete.  
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Modeling was conducted to characterize the rates of TCE and DCE attenuation.  Equations 11a 

and 11b below, were adopted to model the system, because they constituted coupled flux-based 

reactive transport equations that described steady-state convective/dispersive transport and first-

order decay of TCE and DCE in the subsurface. 
 

TCE
O

TCETCETCE
L

TCE J
qdx

dJ
dx
Jd

dx
dJ ελ

α −−= 2

2

     (11a) 

 

TCE
O

TCE
DCE

O

DCEDCEDCE
L

DCE J
q

J
qdx

dJ
dx
Jd

dx
dJ ελελ

α +−−= 2

2

   (11b) 

 

where TCEJ  and DCEJ  were convective molar fluxes for TCE and DCE  [µM/L2/T]; ε  was the 

saturated effective porosity of the aquifer; Lα was the longitudinal dispersivity [L];  TCEλ  and 

DCEλ  were first order degradation coefficients for TCE and DCE [1/T]; and x was the horizontal 

distance from the source area in the principal direction of groundwater flow [L]. Equations (11a) 

and (11b) were derived by substituting equation (1) into typical one-dimensional concentration-

based transport equations. 

 

Equations 11a and 11b were solved analytically assuming boundary conditions which specify 

TCE and DCE fluxes in the near-field match those measured at wells CRP41A and CRP41B and 

that fluxes in far-field approach zero: 
 

410 CPRTCExTCE JJ =
=

           0=
∞=xTCEJ  

 

410 CPRDCExDCE JJ =
=

         0=
∞=xDCEJ  

 

Values for decay parameter TCEλ  and DCEλ  were determined via model calibration; whereas, 

parameters representing the groundwater specific discharge Oq , saturated effective aquifer 

porosity ε , and longitudinal dispersivity of Lα , were specified a priori using information from 

the literature.  From Flach et al. (1999) estimatedε  to be 0.25.  The specific discharge Oq  was 

equated to the site-wide average of 0.02 m/d determined from this study.  Finally, following Basu 
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et al. (2006), the longitudinal dispersivity, Lα  was specified at 20 m; this represented 5% of the 

domain length (i.e., travel distance beyond well CRP41) and 10% of the total TCE plume length 

from well CRP41. 

 

From model calibration, best-fit values for TCEλ  and DCEλ  were determined to be 0.48 and 0.47 

yr-1 respectively.  Values of calibrated decay parameters reflected ‘effective’ or ‘apparent’ 

estimates that were greater than those reported by Basu et al. (2006) but well within the range of 

values (0.1-1 yr-1) reported in the literature (Weidemier et al. 1999).  The nature of TCE and DCE 

degradation was not discerned here, but likely included both aerobic and anaerobic pathways 

(Basu et al. 2006; Sing et al. 2004; and Davis et a l. 2002) given the low fluxes of TCE 

degradation products detected at the site.  Model simulated results were displayed in Figure 4.9. 

The model simulated TCE and DCE fluxes that were comparable to measurements at most 

locations except for DCE at the down-gradient end of the sampling network. Here it appeared 

simulations over estimated DCE attenuation.  It may be that DCE and VC attenuation had stalled, 

because low VC fluxes were measured here and nowhere else. 
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Figure 4.9.  First-order modeling of TCE and DCE degradation near Twin Lakes. 
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5.0 Conclusions and Recommendations 
 

This report presents results of a research project in which passive fluxmeters (PFMs) were used to 

measure changes chlorinated ethene fluxes along the axis of groundwater contaminant plume. 

This information was used to characterize chlorinated ethene loads and the intensity of natural 

attenuation.  This field-based research project pursued three objectives. The first was to 

demonstrate an innovative technology for direct in situ measurements of cumulative water and 

multiple solute fluxes in groundwater. passive fluxmeters were deployed in 14 wells to achieve 

this objective. The wells were  distributed along the longitudinal axis of a chlorinated ethane 

plume in the Twin Lakes test-bed at the Savannah River Site.  At each well location, fluxmeters 

provided direct and simultaneous measures of TCE, DCE, and VC mass fluxes and groundwater 

flows.  Consistent groundwater and contaminant flux measures were obtained for three different 

PFM deployment durations.  The second and third objectives of the research effort were to 

develop a field-based protocol for determining contaminant loading, contaminant attenuation, and 

assimilative capacity using spatially distributed flux measurements of target contaminants and to 

advance the science and understanding of natural attenuation using measured fluxes.  Both 

objectives were accomplished using simple mass balance models and flux-based contaminant 

transport models incorporating first-order TCE and DCE attenuation. These transport models 

were parameterized using measured water flows and contaminant fluxes alone.  Typical measures 

of groundwater levels, aquifer conductivities, and contaminant concentrations were not required. 

 

Results suggested TCE and DCE dilution (dispersion) could not account for degree of flux 

attenuation determined from measurement taken over the site.  Values of calibrated TCE and 

DCE decay parameters reflected ‘effective’ or ‘apparent’ estimates that were greater than those 

reported by Basu et al. (2006) but well within the range of values (0.1-1 yr-1) reported in the 

literature (Weidemier et al. 1999).  Using the above stated 189-day average fluxes at wells 

CRP41A and CRP41B as estimates of  contaminant loads to the aquifer and results from the last 

monitored transect to quantify residual loads, attenuation appears to be 89% complete.  The 

nature of TCE and DCE degradation was not discerned here, but likely included both aerobic and 

anaerobic pathways (Basu et al. 2006; Sing et al. 2004; and Davis et a l. 2002) given the low 

fluxes of TCE degradation products detected at the site.   
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Given the extended duration of PFM deployments, TCE and DCE degradation on the PFM 

sorbent is a concern.  To investigate this potential problem, it is recommended that additional 

field experiments be conducted with PFMs preloaded with fluorinated analogs of TCE, DCE, and 

vinyl chloride. If it is observed that these analogs degraded on installed PFMs, one can then 

correct ambient measures of TCE, DCE, and VC fluxes for degradation occurring on the PFM 

sorbent.  It is also recommended that research be conducted to determine if the observed 

degradation of these analogue PFMs can be used to generate local assessments of in situ 

contaminant attenuation resulting from indigenous microbial activity.  In addition, a simultaneous 

analysis of PFM sorbent samples using available molecular/biological tools is likely to shed 

considerable insight on the organisms effecting both tracer and contaminant attenuation.    
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